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Abstract. Detection and measurement of radiation is used extensively for non-invasive material 

characterization in a range of industries. However, many practical applications are frustrated by 

pulse pile-up within the detector. Pulse pile-up, which occurs when multiple radiation events 

arrive within the temporal resolving time of the detector, degrades the fidelity of subsequent 

material analysis. Traditional pulse processing techniques use fast digital filters and logic 

circuits to detect piled-up events and discard the corrupted data, however, this leads to 

substantial detector dead time. Consequently, there is considerable interest in more complex 

signal-processing algorithms to extend the performance of pulse processors and improve 

material characterization techniques. We present a technology for real-time decoding of pulse 

pile-up events. It is a model-based signal-processing algorithm able to accurately characterize 

the number, time-of-arrival and energy of all events in the detector output. Even in the presence 

of severe multi-pulse pile-up, the composite events are decoded and the energy and time-of-

arrival recovered. The technology has been evaluated using a range of detectors, sources and 

count rates. An exceptional improvement over traditional pulse processing techniques is 

demonstrated. 
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INTRODUCTION 

Pulse pile-up is apparent in the output of a radiation detector when multiple 

radiation events arrive within the resolving time of the detector. As shown in Fig. 1, 

the detector does not have sufficient time to recover from the first detection (i.e. for 

the signal to return to the baseline) to accurately detect subsequent radiation events. 

 
FIGURE 1. Pulse pile-up in the detector output. The signal is composed of multiple individual pulses 

which pile-up on top of each other making it difficult to determine the energy of an individual event. 



Traditional Approaches to Digital Pulse Processing 

Historically, analogue pulse shaping circuitry (i.e. pulse shaping amplifiers, delay 

line circuits and discriminators) has been used to analyze the output of radiation 

detectors. However, across the last two decades, the use of direct digitization of the 

detector output followed by digital pulse analysis techniques has become popular. 

Advantages of digital pulse processing (DPP) include: stable operation across a 

wider range of temperatures and noise environments; additionally, modern digital 

pulse processing techniques have significantly extended the operational count rate 

range of detection systems. This is because more complex signal conditioning and 

‘optimal’ filtering functions can be implemented [1]. 

Commonly in digital pulse processors, linear filters are used to produce trapezoidal 

pulse shapes with variable rise and peaking times. However, it is not possible to 

design such filters to produce both an optimal signal to noise ratio (SNR) and have a 

short duration. The short shaping times required to reduce pulse duration also 

attenuate signal energy resulting in a reduction in SNR, which causes a consequential 

degradation in full width half maximum (FWHM) energy resolution. Furthermore, 

these filtering techniques are unable to resolve closely spaced pulses, consequently 

pulse pile-up remains a problem. 

While there has been significant development in the design and implementation of 

optimal filtering techniques for digital pulse processing, the approach for dealing with 

pulse pile-up in the output of radiation detectors has remained consistent for both 

digital and analogue systems. Generally, logic circuits are used to identify pulses that 

have ‘piled-up’ on top of each other and exclude these events from the energy 

spectrum. Commonly, two separate channels of processing are implemented: a fast 

channel to detect events; and a slow channel to accurately measure the energy. If the 

fast channel detects the arrival of another event within the timing resolution of the 

slow channel both pulses are rejected as pile-up [2]. Although this approach improves 

the accuracy of the spectrum, the time required to collect sufficient statistics 

dramatically increases. In many applications as much as 80% of information can be 

lost to the effects of dead time and pulse pile-up [3]. 

This paper presents an alternate methodology for analyzing the output of radiation 

detectors. Utilizing model-based signal-processing techniques, the digitised output of 

the radiation detector is modeled as the sum of an unknown number of events each 

having a random time of arrival, unknown energy and having some expected pulse 

shape. We present a digital pulse processing technique capable of accurately 

estimating each of these parameters in real-time, enabling the recovery of information 

from piled-up events. The performance of the technique, with a number of radiation 

detectors, and across a range of input count rates is also evaluated. 

DISCUSSION 

Recently, there has been interest in implementing more complex signal-processing 

methodologies to further improve detector resolution, timing and throughput at high 

count rates [4]. However, the performance of more advanced ‘optimal’ digital pulse 



processing techniques has been shown to be highly dependent on the underlying 

assumptions of such techniques [5]. 

Model-based, High Throughput Digital Pulse Processing 

This paper presents a non-linear, model-based, real-time, signal-processing 

algorithm that accounts for many of the time varying system dynamics. The algorithm 

characterizes the output of the radiation detector as shown in Eq. 1. 
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As depicted in Fig. 2, the digitised radiation detector time series ( ][ny ) is modeled 

as the sum of an unknown number of radiation events ( N ), with random time of 

arrivals ( i ), and amplitudes ( i ), interacting with a radiation detector, that have an 

expected pulse shape ( ][nh ) and with a noise process ( ][n ). Therefore, so as to fully 

characterise the digitised output of the radiation detector, it is necessary to estimate: 

the expected impulse response of the detector; the number of events in the digitised 

detector time series; the time-of-arrival of each of those radiation events; and the 

individual energies of each event. Once these parameters have been determined, the 

digitised detector data can be accurately decomposed into the individual component 

events and the energy of each event determined. 

 
 

Digitised detector data 

Individual component events 
 

FIGURE 2. Schematic showing that the digitised detector data is in fact a summation of multiple 

events of distinct energies interacting with the detector at different time-of-arrivals. 

 

The model of the digitised detector time-series from Eq. 1 may also be written in 

matrix form as 

   AY , (2) 

where A is a Nm  matrix. The entries of the matrix  are given by 



 
    1,min)(

0
,




Tmnnd
otherwise

inA iii 

,
 (3) 

 

where T is the length of ][nd  in samples (the detector impulse response) and m is the 

total number of samples in the digitised signal ][ny . Additionally,  is the vector of 

N signal energies and ][n the discrete time form of the noise with length m . 

Thus, the columns of matrix A contain multiple versions of the unit detector 

impulse response. For each of the individual columns, the starting point of the unit 

detector impulse response is defined by the time-of-arrival of that particular event. By 

solving Eq. 2 for the N individual energy values, this approach is able to decode pulse 

pile-up events in real-time, accurately characterizing the number, time-of-arrival and 

energy of all events in the detector output. 

The Pulse Pile-up Recovery Algorithm 

The pulse pile-up recovery algorithm is illustrated in Fig. 3 and operates directly on 

the digitised output of the detector. In this specific implementation, the detector output 

signal is digitised at 60 MHz using a 16-bit analogue to digital converter (ADC). 

 

 
 
FIGURE 3. A functional overview showing the stages of the pulse pile-up recovery algorithm. 

 

Detector Characterization is the first stage of the algorithm; it takes as input the 

detector time series data and determines the unit impulse response of the detector (the 

pulse shape expected from the detector). Data is collected under the constraint of a low 

input count rate (< 10,000 c/s) in order to minimize the probability of pile-up events. 

The unit impulse response is constructed by averaging a large number of individual 

radiation events. 

Subsequently, the impulse response is used by the Event Localisation stage to find 

the number and time-of-arrival of each event in the data stream. As Fig. 4 illustrates, it 

is important not to constrain the event arrival time to integer values of the ADC 



sampling. Due to the asynchronous relationship between the ADC clocking and the 

arrival time of a radiation event it is important to account for intra-sample arrival 

times. Fig. 4b) depicts the error in the reconstruction model when one assumes integer 

arrival; this error degrades the overall performance of the algorithm. Accounting for 

intra-sample event arrival (by interpolating the detector impulse response across 2 

concecutive samples) the residual error in the fitting of the model to the data is 

substantially reduced, as depicted in Fig. 4c). 

 

 
 

FIGURE 4. A functional overview of a numerical simulation scanning the arrival of a radiation event 

across two sampling points with each having four sub-sample time of arrival position. 

 

By harnessing the a priori knowledge of the expected pulse shape and interpolating 

between ADC samples, the Event Localisation stage uses finite impulse response 

filters (FIR) to determine very accurately the number and arrival time of each radiation 

event. Using the 60 MHz 16-bit ADC events can be time stamped with 4 ns accuracy, 

a dynamic range (the ratio of smallest to largest energy events detected) of over 600 

has been demonstrated. 

The Pulse Identification stage determines the energy of all the radiation events in 

the detector data stream. As its input it uses: (a) the a priori knowledge of the detector 

unit impulse response; (b) the number of events; and (c) their individual time-of-

arrival data obtained from the Localisation stage. 

The final functional stage of the real-time signal-processing algorithm is the 

Validation stage. As depicted in Fig. 5, at this stage all the parameters that have been 

estimated by previous algorithmic stages (pulse shape, number of events, time-of-

arrival and event energy) are combined to reconstruct a 'noise-free' model of the 

detector data. By subtracting this model of the detector data from the actual digitised 

detector time series, the accuracy of the estimated parameters can be determined. 

Much like examining the residual from a straight line fit of a data set, if the magnitude 

of the residuals is small, the parameters well describe the data. However, if at any 

point large residuals are observed, the detector data has been poorly estimated and that 

portion of the data can be rejected. 

 

a) b) c) 



 
FIGURE 5. A ‘noise-free’ model of the detector data is reconstructed by the “Validation” stage using 

the parameters which have been determine from previous stages of the algorithm. 

EXPERIMENTAL SETUP AND RESULTS 

The real time performance of model-based parameter estimation and its application 

to digital pulse processing have been evaluated using both scintillation based and 

semiconductor based radiation detectors. 

Algorithm Performance Using a Scintillation Detector NaI(Tl) 

To evaluate the efficacy of the technique with scintillation detectors, a 51 x 51 mm 

NaI(Tl) detector from Scionx was used. Secured on a movable mount, the detector was 

irradiated with a collimated beam of gamma-rays. The flux of gamma-rays through the 

detector was adjusted by using three different 
137

Cs sources of varying strength (0.37 

GBq, 3.7 GBq and 37 GBq ) and also by adjusting the distance between the source and 

the detector. 

The output from the anode of the photomultiplier tube was connected to a wide 

band current amplifier (FEMPTO model DHPCA 100). The output of the FEMPTO 

amplifier was fed directly into the pulse processing hardware, which digitised the 

voltage signal using a 14-bit, 60 MHz ADC. The digitised detector data stream was 

processed in real-time on a Virtex-4 SX 35 field programable gate array (FPGA) 

The real-time performance of the pulse pile-up recovery algorithm is illustrated in 

Fig. 6 (in terms of FWHM energy resolution and dead-time) with increasing input 

count rate. Despite a 30-fold increase in input count rate, from 50 kc/s to 1500 kc/s, 

the detector dead time shown in Fig. 6a) remains less than 10%. The FWHM detector 

resolution for the 662 keV energy peak from 
137

Cs, shown in Fig. 6b), degrades by less 

than 25% from a minimum of 6.8% to a maximum 8.9%. 



 

FIGURE 6. The performance of pulse pile-up recovery algorithm vs. input count rate. Up to a input 

count rate of 1500 kc/s detector dead time is below 10% and detector energy resolution less than 9%. 

Algorithm Performance Using a Silicon Drift Diode Detector 

The performance of the real-time pulse pile-up recovery algorithm has also been 

evaluated with semiconductor based radiation detectors, specifically a 7 mm
2 

silicon 

drift diode (SDD) detector manufactured by Ketek Gmbh of Germany. 

The output from the charge reset amplifier of the SDD detector was passed through 

a CR shaping network to produce a nuclear decay pulse of approximately 12 μs in 

duration. This signal was then conditioned using the FEMPTO DHPCA 100 amplifier 

to ensure that the peak of interest (the 5.9 keV peak from 
55

Fe) equated to 

approximately 30% of full scale of the ADCs (approximately 300 mV). An 
55

Fe 

isotope source was secured to a movable mount and the source-to-detector distance 

controlled very accurately by a stepper motor. Using this experimental setup, it was 

possible to accurately and repeatable control the source-to-detector distance to less 

than 0.02 mm. 

As depicted in Fig. 7, using this setup, the input count rate could be varied across a 

range of 10-194 kc/s. Across a 20-fold increase in input count rate, the detector dead-

time remained below 10% (a) and the FWHM energy resolution degraded by 12% (b). 

 

FIGURE 7. The performance of the pulse pile-up recovery algorithm used in conjunction with a 7 mm
2
 

silicon drift diode detector from Ketek. 

a) 

b) 
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IMPLEMENTATION 

The real-time pulse pile-up recovery algorithm has been designed and implemented 

in a Xilinx FPGA on an electronics board designed with and sold by XIA (shown in 

Fig. 8). All the data processing modules are implemented on-board and 

communication with the host is provided via either an Ethernet or a fast USB 2.0. The 

very high rate USB 2.0 communications protocol not only enables list mode operation 

(the energy and time-of-arrival of detected events are passed up to the PC for further 

processing) but also enables the card to work as a digital oscilloscope. Digitised 

detector data can be uploaded to the host computer at > 30 MB/s. 

 

 

FIGURE 8. A nuclear electronics board designed for the real time pulse pile-up recovery algorithm. 

CONCLUSION 

A model-based digital pulse processing technique has been presented that enables 

high throughput low dead-time pulse processing by recovering rather than discarding 

data corrupted by pulse pile-up. The algorithm has been implemented in real-time and 

its performance evaluated with a range of radiation detector types. Key performance 

metrics include: a throughput in excess of 1500 kc/s; very low dead-time; little 

degradation of resolution at high count rates; real-time decoding of multi event pulse 

pile-up; and pulse pair resolution less than 50 ns. 
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